Class Table

TI83-84 MATH and ANGLE Menus



Table of Contents for CALCULATORing
 
Math   Number   Complex   Probability   Angle


MATH
1:Frac
2:Dec
3:3 cube
4:3 cube root
5:x xth root       >> input as x, then 5:x , then radicand
      value is real, complex, list, expression
6:fMin(expression,variable,lower,upper[,tolerance]) minimum of a fx
7:fMax(expression,variable,lower,upper[,tolerance]) maximum of a fx
8:nDeriv(expression,variable,value[,delta x])
9:fnInt(expression,variable,lower,upper[,delta x])
0:Solver
Solve the equation x + 2 = - x + 3 with a TI83
1st: Rewrite the equations so one side or member is 0.
2nd: Press [MATH] then [0:Solver(]
3rd: Press the curser to get up to the equation line.
4th: Type the expression from step 1 after the =.

5th: Press the curser down to the line with the variable you wish to find.

6th: Press [SOLVE], which is [ALPHA][ENTER], to solve.


MATH NUM Number
1:abs(value)     absolute value
2:round(value[,#decimals])
3:ipart(     integer part
4:fpart(     fraction part
5:int(value)     greatest integer less than or equal to the value
6:min(listA,ListB)     smaller of 2 values or paired list values
7:max(     larger of 2 values or paired list values
8:lcm(     least common multiple of 2 numbers
9:gcf(#one,#two)     greatest common factor of 2 numbers


MATH CPX Complex
      a+bi or re^( *i) a = r*cos( ) b=r*sin( )
1:conj(     conjucate of complex number
2:real(     real part
3:imag(     pure imaginary part
4:angle(     either a+bi) or re^( *i))
5:abs(     either a+bi) or re^( *i)) yields r which is sqrt(a2 + b2)
6:Rect     >> input as complex# Rect yields a+bi
7:Polar     >> input as complex#
Polar     yields re^(theta*i)


MATH PROB probability
1:rand[(numtrials)]     >> psydo-random # list generator where, 0<#<1
    >> rand seed is factory set at 0. use the store button to input a new seed to generate the psudorandom number
2:nPr     input as >> n nPr r to yield permutation of n things take r of them ---- list of n things take first r of them
3:nCr     input as >> n nCr r to yield combination of n things take r of them --- groups of r things make from set of n items
4:!     factorial input as >> number!
5:randInt(lower,upper[,numtrials])     returns 1 random integer within range
6:randNorm(mean,stdev[,numtrials])     most within mean-3stdev < no < mean+3stdev
7:randBin(numtrials,p[,numsimulations])     retruns list of numsimulations binomially distributed integers
    randIntNoRep(lowerint,upperint) returns ordered list of integers


ANGLE
1:°       degree
2:'       minute
3:r       radian
4:DMS       into degree, minute, second
5:RPr(r, )
6:RR (x,y)
7:PRx(r, )
8:PRy(r, )


 
 
[MC,i. Home] [Good Stuff] Classes [Words]
© 2007, 2012 A. Azzolino
www.mathnstuff.com/math/spoken/here/2class/400/83menu1.htm