## TI83-84 MATH and ANGLE Menus

 Table of Contents for CALCULATORing   Math   Number   Complex   Probability   Angle

MATH
1:Frac
2:Dec
3:3 cube
4:3 cube root
5:x xth root       >> input as x, then 5:x , then radicand
value is real, complex, list, expression
6:fMin(expression,variable,lower,upper[,tolerance]) minimum of a fx
7:fMax(expression,variable,lower,upper[,tolerance]) maximum of a fx
8:nDeriv(expression,variable,value[,delta x])
9:fnInt(expression,variable,lower,upper[,delta x])
0:Solver
 Solve the equation x + 2 = - x + 3 with a TI83 1st: Rewrite the equations so one side or member is 0. 2nd: Press [MATH] then [0:Solver(] 3rd: Press the curser to get up to the equation line. 4th: Type the expression from step 1 after the =. 5th: Press the curser down to the line with the variable you wish to find. 6th: Press [SOLVE], which is [ALPHA][ENTER], to solve.

 MATH NUM Number 1:abs(value)     absolute value 2:round(value[,#decimals]) 3:ipart(     integer part 4:fpart(     fraction part 5:int(value)     greatest integer less than or equal to the value 6:min(listA,ListB)     smaller of 2 values or paired list values 7:max(     larger of 2 values or paired list values 8:lcm(     least common multiple of 2 numbers 9:gcf(#one,#two)     greatest common factor of 2 numbers

 MATH CPX Complex       a+bi or re^( *i) a = r*cos( ) b=r*sin( ) 1:conj(     conjucate of complex number 2:real(     real part 3:imag(     pure imaginary part 4:angle(     either a+bi) or re^( *i)) 5:abs(     either a+bi) or re^( *i)) yields r which is sqrt(a2 + b2) 6:Rect     >> input as complex# Rect yields a+bi 7:Polar     >> input as complex# Polar     yields re^(theta*i)

 MATH PROB probability 1:rand[(numtrials)]     >> psydo-random # list generator where, 0<#<1     >> rand seed is factory set at 0. use the store button to input a new seed to generate the psudorandom number 2:nPr     input as >> n nPr r to yield permutation of n things take r of them ---- list of n things take first r of them 3:nCr     input as >> n nCr r to yield combination of n things take r of them --- groups of r things make from set of n items 4:!     factorial input as >> number! 5:randInt(lower,upper[,numtrials])     returns 1 random integer within range 6:randNorm(mean,stdev[,numtrials])     most within mean-3stdev < no < mean+3stdev 7:randBin(numtrials,p[,numsimulations])     retruns list of numsimulations binomially distributed integers     randIntNoRep(lowerint,upperint) returns ordered list of integers

 ANGLE 1:°       degree 2:'       minute 3:r       radian 4:DMS       into degree, minute, second 5:RPr(r, ) 6:RR (x,y) 7:PRx(r, ) 8:PRy(r, )

 © 2007, 2012 A. Azzolino www.mathnstuff.com/math/spoken/here/2class/400/83menu1.htm